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Abstract—Sparsity is becoming arguably the most critical dimension
to explore for efficiency and scalability as deep learning models grow
significantly larger. Particularly, pruning is a common method to reduce
redundant computations in attention-based and convolution-based mod-
els. The induced sparse matrix multiplication (SpMM) normally requires
domain-specific hardware architecture (DSA) to eliminate unnecessary
zero-valued computations. However, generating an optimal kernel code
for SpMM on general-purpose and ISA-based spatial accelerators without
changing the hardware architecture is still an open problem.

In this paper, we propose a compiler plug-in named SpMMPIlu, which
can extend the representation and optimization ability for SpMM in
current deep learning compiler frameworks that only support dense
matrix multiplication. The key of SpMMPIlu is a flexible intermediate
representation— Sparse IR, representing the SpMM with various sparsity
patterns based on meta-ops with a multi-level structure. Meta-op takes
abstraction of the hardware intrinsic as its minimum granularity, and
the powerful optimizers of existing NN compiler backends (e.g., Auto-
schedule in TVM, AKG in MindSpore) can be easily reused for its
computational scheduling and code generation. Moreover, we propose a
two-step (segmentation & grouping) method to achieve an efficient Sparse
IR for each sparsity pattern. Only three passes are added in SpMMPlu
to provide an automatic solution for SpMM kernel code generation. We
embed SpMMPIlu into MindSpore and do experiments on NVIDIA V100
GPU and Huawei Ascend 910 to verify its effectiveness and scalability.
The results show that with SpMMPIlu, MindSpore can support various
sparsity patterns and deliver a 1.93x (on V100 GPU) and 2.21x (on
AScend 910) speedup averagely compared to the dense counterpart.

Index Terms—Sparsity; Plug-in; DNN compiler; Intermediate repre-
sentation; CNN; Transformer.

I. INTRODUCTION

Deep neural networks (DNN) have been developing rapidly in
many applications, such as image classification, object detection, and
natural language processing [1]. As these models become larger,
they are inevitably getting sparse to relieve the challenge of the
tremendous computation and the large amounts of data transfer
between off-chip memory and on-chip memory. For convolutional
neural networks (CNN), weight pruning technology is a promising
method to achieve sparsity while maintaining the model accuracy.
According to the granularity, these pruning methods can be di-
vided into two categories. Between them, the structured pruning
method generates regular channel-wise, filter-wise, block-wise spar-
sity, etc. [2], while unstructured pruning generates fine-grained spar-
sity in weight matrix [3]. For transformer-based neural networks (e.g.,
BERT, RoBERTa, and the GPT family [4]), researches mainly focus
on the sparsity in attention mechanism. There are a large number
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of redundant connections in the attention mechanism, and many
works [5]-[8] have proposed to remove these redundant connections.

Meanwhile, general-purpose graphics processing units (GPGPU)
and other spatial accelerators that employ specialized and hierarchi-
cal computation and memory resources, have recently shown great
potential for tensor applications such as deep learning, scientific
computing, and data mining [8], [9]. However, for the diverse sparsity
patterns in CNNs and Transformers above, only a small part of
them can be exploited by GPGPU directly [2], [10]. Most of these
sparsity patterns need to cooperate with a dedicated domain-specific
hardware architecture (DSA) in an algorithm-hardware codesign
style [3], [7], [8] to utilize the sparsity. However, how to exploit these
diverse sparsity patterns on typical spatial architectures like GPGPU
conveniently is still an open problem. On the one hand, GPGPU
and most of the other spatial accelerators do not inherently support
sparsity. It is hard to extract a unified expression paradigm from
various sparsity patterns suitable for the architecture characteristics
of GPGPU and other spatial accelerators, which hinders the automatic
generation of high-quality kernel code for sparse operators. On the
other hand, the cost of algorithm-architecture codesign is too high,
lacking of generality and scalability.

We therefore propose SpMMPlu, a compiler plug-in, which can
expand the ability of existing DNN compilers to support the various
sparsity patterns on GPGPU and other typical spatial accelerators. A
novel intermediate representation (IR)— Sparse IR is proposed to ef-
ficiently represent sparse matrix multiplication (SpMM) with various
sparse patterns using a unified paradigm— meta-op. The hardware-
intrinsic abstraction is considered in meta-ops as the finest-grained
workload for high resource utilization. Each meta-op aggregates
lots of the finest-grained workloads, thus exploiting the widespread
locality in SpMM. Our contributions could be summarized as follows:

« We propose a novel representation to describe the compute
behavior of the SpMM on GPGPU and other spatial accelerators,
named Sparse IR. Sparse IR is a multi-level IR representing
different granularity of computations according to the multiple-
level parallelism / sequentiality in spatial architecture. Each basic
meta-op, the innermost Sparse IR, is essentially a sliced dense
matrix multiplication (GEMM), for which we can get high-
quality implementation code conveniently, benefiting from the
powerful scheduling ability in existing DNN compilers.

« We propose a plug-in (named SpMMPlu) to provide an automatic
compilation for SpMM in existing NN compilers. Specifically, In
SpMMPlu, a novel meta-op segmentation & grouping algorithm
is proposed to achieve efficient Sparse IR for a specific sparsity
pattern. A DFG transformation pass will change the data flow
graph (DFG) according to the Sparse IR in the front end
of the compiler. Moreover, two passes (layout transformation
elimination pass and meta-ops fusion pass) are proposed for
kernel code auto-generation in the backend of the compiler.

o Experiments on a variety of tensor applications show that,
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Fig. 1: Sparsity in CNN and Transformer: (a) Sparsity patterns caused
by unstructured pruning and structured pruning method in CNN.
(b) The calculation process of the attention mechanism, and the
caused SDMM and SDDMM in sparse attention.

Conference

with SpMMPlu, MindSpore can achieve more than 1.93x and
2.21x speedup on NVIDIA V100 GPU and Huawei Ascend
910 with several widely-used NN models. The performance of
SpMMPIu-Mind also exceeds the other popular NN compilers&
frameworks (e.g., TVM [11], DeepSpeed [12] and Pytorch [13])
and kernel libraries (e.g., cuBLAS [9], cuSPARSE [14] and
sputnik [15]) on NVIDIA V100 GPU.

II. BACKGROUND
A. Various forms of sparsity

Research on neural science and deep learning suggests that a
deep neural network is sparse [16]. Various model compression
algorithms are shown to construct sparse models with little accuracy
degradation. In convolutional neural networks (CNN), As shown in
Fig. 1(a), unstructured pruning [3] prunes model weights without a
regular pattern, while other works prune DNN models in a structured
granularity, such as in the filter, channel and block level in CNN [2].
Transformer models nowadays have achieved impressive performance
in natural language processing and computer vision applications by
effectively capturing contextual knowledge from the entire sequence.
The attention mechanism is the key operation in Transformer models.
Fig. 1(b) depicts the computational process of the self-attention
(abbreviated as attention) mechanism. The main computations are
the GEMM between query (Q) matrix and key (K) matrix and the
GEMM between score (S) matrix and value (V) matrix. The attention
mechanism is essentially a content-based similarity search. In general,
most tokens in the sequence are irrelevant to the current query, which
makes the attention mechanism inherently sparse, and the sparsity is
mainly contained in the score matrix. This sparse score matrix is the
output of @ x K7 and the input of S x V, which turns the attention
operation into sampled dense-dense matrix multiplication (SDDMM)
and sparse-dense matrix multiplication (SDMM). There are also many
works to adopt various sparsity patterns on the score matrix [7], [8].

B. Existing designs with sparsity

1) Domain specific architecture for sparsity acceleration: Many
works co-design sparse algorithms with hardware architecture. Sparse
Tensor core [17] proposes a vector-wise sparsity pattern to im-
prove the workload balance and a micro-architecture optimization
to adapt to this sparsity pattern. EIE [18] designs a new data
encoding/decoding node and a new Processing Element (PE) to speed
up sparse matrix-vector multiplication (SpMV). SCNN [19] designs
another architecture of PE, which supports sparse convolution in a
compressed format. SpAtten [7] proposes cascade token-level pruning
in Transformer, and a dedicated hardware module for fetching and
reordering the sparse tokens. Sanger [8] proposes a finer-grained
pruning method on the score matrix in attention. Meanwhile, cor-
respondingly, a reconfigurable systolic-format architecture is also
designed in Sanger to support this special sparsity pattern. However,
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Fig. 2: The overall workflow of SpMMPIu.

in real scenarios, we can not ideally design a chip with domain-
specific architecture (DSA) for each algorithm and each sparse pat-
tern, leading to the dilemma of excessively high cost. This motivates
us to focus on efficient auto-implementations for various sparse
models on more general-purpose architecture like GPGPU and other
spatial accelerators.

2) Sparsity support in DNN frameworks and compilers: Deep
learning frameworks like PyTorch [13] or compilers like TVM [11]
exploit sparsity by vendor-specific libraries like cuSPARSE [14] or
user-provided sparsity kernel templates [11]. However, these methods
lack an understanding of the specific sparsity pattern, often leading
to subpar performance. For example, cuSPARSE tends to apply a
compressed sparse row (CSR) compression on any sparse tensors,
which misses the message contained in specific sparsity patterns
like channel and block level sparsity. As a result, cuSPARSE has
been shown to underperform the dense matrix operation library
cuBLAS [9], even when the sparsity of the matrices reaches 98%.
This also motivates us to find a universal paradigm to generate high-
quality kernel code for various sparsity schemes.

I11. SPMMPLU DESIGN
A. SpMMPlu overview

We present the overall workflow of SpMMPIu as in Fig. 2. The
input ONNX model is firstly lowered to graph-level IR, a data
flow graph (DFG) with normal operators. The meta-op segmentation
& grouping algorithm hoists the graph-level IR to our Sparse IR,
which represents the specific sparse pattern using meta-op. During
this step, the hardware-intrinsic is abstracted as a critical input for
the algorithm. Then, we use a DFG transformation pass to lower
the Sparse IR back to graph-level IR again. In this process, the
GEMM nodes in the original DFG are replaced by meta-ops (“sliced”
matmuls). The DFG we achieved in this step is named Meta-
DFG. The Meta-DFG is further lowered to low-level IR like Halide
IR [11] and AKG IR [20] in the backend of the compilers. Layout
transformation operator elimination pass and meta-ops fusion pass
are added to the backend to optimize the low-level IR and finally
generate efficient kernel code for each SpMM.

B. SparselR: An IR to represent sparsity patterns using meta-ops

A matrix multiplication (GEMM) operation has two input matrices
and one output matrix. Depending on whether the sparsity is in
the input matrix or the output matrix, the sparse matrix multipli-
cation (SpMM) can be divided into two categories, input sparsity
SpMM and output sparsity SpMM. Characteristically, in CNN, the
sparsity is induced by the weight pruning technology, resulting in
input sparsity SpMM (SDMM). As for the sparse attention module
in Transformer, the sparse score matrix makes @ x K7 as an output
sparsity SpMM (SDDMM). For both SDMM and SDDMM, we use a
uniform method to map the sparsity of the two input matrices and one
output matrix into a three-dimension computational space as shown
in Fig. 3(a), which describes the computation properties of SpMM
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Fig. 3: Sparse IR and meta-op: (a) The mapping from the input matrixes and output matrix to the computational space. And meta-ops
generation from the computational space. (b) The space mapping rules, the syntax for Sparse IR and the semantics of a meta-op.

more comprehensively. Specifically, according to the rules described
in Fig. 3(b), we broadcast the 2-dimensional matrices in data space
along the third dimension it does not have in the 3-dimensional
computational space. Then we and the broadcasting results of the
three matrices to get the final computational space mask. This rule
also applies when more than one matrices are sparse.

In computational space, we gather adjacent non-zero elements in
a cuboid as the basic computing unit in SpMMPIu, named meta-
op. Take the computational space in Fig. 3(a) as an example, four
meta-ops are generated in this space. Comparing the computational
process of a meta-op (e.g., meta-op 4 in Fig. 3(b)) with a dense
GEMM, we can figure that a meta-op is essentially a “sliced” dense
GEMM. They have the same computational paradigm, and the only
difference lies at the loop bounds. This is a useful feature, which
means we can easily reuse the powerful scheduling ability of the
original NN compilers (e.g., Auto-schedule in TVM [11] or AKG
in MindSpore [20]) to get a high-quality implementation for each
meta-op.

To represent SpMM with meta-ops, we propose a novel Sparse
IR as in Fig. 3(b). Sparse IR is a multi-level IR representing
different granularity of computations according to the multiple-level
parallelism / sequentiality in spatial architectures. Here, we use sub-
IR to represent the finer-granularity computations in Sparse IR. For
typical GPGPU, Sparse IR is organized in a three-level structure, i.e.,
SpMM operator sub-IR, meta-op group sub-IR, and meta-op sub-IR.
Each innermost meta-op sub-IR consists of coordinates of two critical
points (as the two points of the meta-op 4 in Fig. 3(a)) in computa-
tional space to uniquely identify a specific meta-op. The coordinates
of the two critical points directly determine the loop bounds for
specific meta-op. The meta-op sub-IR matches primitive/thread-level
parallelism (e.g., wmma in NVIDIA V100 GPU) in GPGPU, The
meta-op group sub-IR represents the parallelism of meta-ops, which
matches block-level parallelism in GPGPU (the meta-ops in a single
meta-op group are mapped to different blocks in the same kernel).
For most of the other spatial accelerators, the amount of calculation
per meta-op is always too small for the massive parallel resources, so
it is necessary to introduce this middle-level sub-IR for high resource
utilization. The SpMM operator sub-IR represents the sequentiality
among the meta-op groups, which matches the kernel-level serial-
ization in GPGPU. In this way, The meta-op groups (cuda/opencl
kernels in GPGPU) will be executed sequentially to complete the
computations of a whole SpMM operator.
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Fig. 4: Rewrite computational mask using hardware intrinsic ab-
straction. Then expand meta-ops in three type cases during the first
iteration of the segmentation algorithm.

C. Strategy to generate efficient sparse IR

To achieve efficient Sparse IR for a specific sparsity pattern,
we should make each granularity of the computations represented
by each level of sub-IR to fully utilize the parallel resources. We
design a hardware-intrinsic-aware strategy to find the most promising
Sparse IR for each sparsity pattern. For typical GPGPU, the hardware
intrinsic is usually abstracted as a cuboid in computational space. For
example, we can abstract tensor core as a 16 X 16 x 16 cuboid (the
“wmma” primitive for tensor core in NVIDIA V100 GPU executes
a 16 x 16 x 16 GEMM each time). We use the hardware abstraction
as the initial minimum size of a meta-op, which guarantees the high
utilization of the finest granularity of hardware resources. We first
rewrite the computational space mask according to the hardware
abstraction as shown in Fig. 4. Then we implement the meta-op
segmentation & grouping algorithm based on the rewritten mask as
Alg. 1 to generate meta-ops & meta-op groups, respectively.

The segmentation algorithm is the process of expanding meta-ops
from small to large. We prefer large meta-ops because larger meta-
ops make better use of locality and are thus more computationally
efficient. At first, each non-zero in the rewritten mask is a 1 X 1 X
1 meta-op, we then iterate over each meta-op, combining as many
as possible smaller meta-ops into a larger meta-op iteratively. For
example, in the first iteration, the 1 X 1 X 1 meta-op may be extended
into a bigger meta-op size of 2 X 2 X 2 (type 1 in Fig. 4), 2 X 2 X
1 (type 2 in Fig. 4) and 2 X 1 X 1 (type 3 in Fig. 4) according to the
different aggregation degree of the around meta-ops. In practice, the
aggregation degree thresholds of these three types are set empirically
and should achieve a good trade-off between introducing redundant
computation and improving computational efficiency.

Next, in the grouping algorithm, we handle input and output
sparsity separately to obtain efficient meta-op grouping results. For
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Fig. 5: The process of code generation: (a) A computational space and the resulted meta-op groups. (b) The Meta-DFG after DFG
transformation pass. (c) The compilation process in the backend of the compiler. And the changes in kernel code with each critical pass.

Algorithm 1: Meta-Op Segmentation & Grouping
Input: Mask[X][Y][K]
Output: List of Meta-Op Group Lg
1 \* Meta-op Segmentation *\
2 \\Use Sy k) to represent meta-op set with size x,y, k
3 S@1,1,1) = Set O
4 for i:1 — X,
5 if Maskli][j][l] is True
6 | Sq,1,1)-nsert( {3, 5,1} )
7 @ = Queue (S1,1,1); \\Q stores all untraversed S( , r)
8
9

j:1—=Y, 11— Kdo

Ls = List of Meta-op Set
while Q # 0 do
10 S(:E,y,k) = QPOP()

11 for {i,5,1} € Sz y,x) do

12 if arounding meta-ops meet type 1 in Fig. 4

13 Remove these meta-ops from S, y x)

14 S(2,2y,2k) insert({4, 7, 1})

15 else if arounding meta-ops meet type 2 in Fig. 4

16 Remove these meta-ops from S, 4 k)

17 Sxy-nsert({7, , 1) (9=(2x,2y,k),(2x,y,2K) or (x,2y,2k)
18 else if arounding meta-ops meet type 3 in Fig. 4

19 Remove these meta-ops from S, y 1)

20 S(*>.insert({i, 5P (9)=2xyk), (x,2yk) or (x,y,.2k)

21 if S(:c,y,k) # @

22 Ls.append (S(z,y, 1))

23 S(e,y,k)-clear()

24 for S(*) e{s oyl k) @ = 2ey =y 2uk =k, 2R) ) do
25 if S(*) 75 é

26 | Qpush(S(,))

27

28 \* Meta-op Grouping *\
29 Lg = List of Meta-op Group
30 for S(*) € Ls do

31 if is output_sparsity

32 ‘ G1 = S(*)

33 else

34 | G1,---,Gn = Group_With_No_Reduce (S(.))
35 fori:1 — ndo

36 if #(G;) < Min_Group_Num

37 G ; = Combination_With_No_Additive()

38 Append All G;(i: 1 — n) to Lg.

output sparsity, there is no additive relationship between any two of
the meta-ops, thus we group the meta-ops with the same size together
as one meta-op group, which is beneficial for achieving balanced
workloads on massive parallel resources. As for input sparsity, there
may be some meta-ops each producing a partial sum. So they need
to be added to produce the corresponding part in the output matrix.
For this case, we add a constraint: The meta-ops with additive
relationships should not be gathered into one group. This way, the
accumulations of these meta-ops are executed as we execute mate-op
groups (kernels) sequentially on hardware. With this constraint, each
kernel avoids the extremely expensive atomic addition operation, and

it guarantees that the meta-ops in a meta-op group can be executed
completely in parallel. However, this constraint also has the drawback
that it may cause a small number of meta-ops in a group, inducing
low utilization of the massive parallel resources. As compensation,
we combine several groups with no additive relationship together to
improve the hardware utilization.

D. Auto code generation

SpMMPlu offers three compilation passes to extend the capability
for SpMM represented by our Sparse IR. We take the sparse computa-
tional space in Fig. 5(a) as an example to illustrate the code generation
process on GPGPU, where three meta-op groups are obtained by our
meta-op segmentation & grouping algorithm in Sec. III-C, and each
meta-op group will eventually correspond to a kernel.

1) DFG transformation pass: DFG transformation pass transforms
the original DFG to Meta-DFG according to the corresponding
Sparse IR. Specifically, for the computational space in Fig. 5(a),
DFG transformation pass will transform the original single graph
representing the dense GEMM into a graph with three subgraphs,
each of which corresponds to a meta-op group as shown in Fig. 5(b).
In each subgraph, we insert slice node in the input side of the original
DFG to offer the specific input data for each meta-op. After each
matmul node, we insert inverse slice node to recover the sliced-out
data to a global data format. At last, we insert a inplace assign node
to gather all the output tensors of each meta-op together to achieve
the final output tensor.

2) Layout transformation operator elimination pass: The Meta-
DFG is lowered to low-level IR and then be compiled by a serials
passes as shown in the compilation process part in Fig. 5(c). At
beginning, the low-level IR of a single meta-op is shown as the
original GEMM paradigm part in Fig. 5(c), which is a typical three-
tier for-loop to represent the dense GEMM. Then this IR is processed
by the @ schedule pass maintained originally in NN compilers like
the Polyhedron pass in AKG [20] or the Auto-schedule pass in
TVM [11]. The schedule pass explores the schedule space (e.g.,
loop split, loop reorder, vectorize, etc.) to get efficient computational
paradigm for each meta-op on a specific hardware platform. Then,
compilers often have passes (e.g., Flatten pass, Rewrite pass, etc.) to
further optimize the computational paradigm.

After these paradigm optimization passes, the low-level IR will be
processed by our added @ layout transformation operator elimination
pass. The essence of this pass is that we find the layout transformation
operators (e.g., slice, reshape, transpose, etc.) can be normally merged
into computation-intensive operators by changing a little bit about
the kernel code of the computation-intensive operators. Specifically,
in the compilation process for SpMM in CNN and Transformer, the
effect of this pass is reflected in two aspects. First, for the low-level IR
after paradigm optimization passes, this pass will offset the indexes
of the three tensors in IR according to the meta-op location message


















































































































Tab. 1. Evaluated models with different sparsity patterns and corresponding sparsity ratios

Model Type Sparsity / Type Sparsity ratio Model Type Sparsity Sparsity ratio
SDDMM GST [21] / Structured 92.5% SDMM GST [21] / Structured 92.5%
Transformer (output Longformer (LF) [5] / Structured 94.9% Transformer (input Longformer (LF) [5] / Structured 94.9%
(NLP) A ar:i’t ) Big Bird (BD) [6] / Other 85.4% (NLP) s arsit ) Big Bird (BD) [6] 7 Mixed 85.4%
P Y Random (RD) [8] / Unstructured 95.2% P y Random (RD) [8] / Unstructured 95.2%
filter-wise (FW) [2] / Sturctured 61.2% filter-wise (FW) [2] / Sturctured 63.9%
Resnet-18 Conv channel-wise (CW) [2] / Structured 66.3% Resnet-50 Conv channel-wise (CW) [2] / Structured 71.8%
(CV) (input sparsity) PCNN [22] / Other 86.4% (CV) (input sparsity) PCNN [22] / Other 89.9%
Random (RD) [3] / Unstructured 94.5% Random (RD) [3] / Unstructured 96.4%
from Sparse IR, as @ in Fig. 5(c). In this way, the added slice node, P22 winsspore [ cumiaswin [ g [TEE] spurikctind
inverse slice node and inplace assign node in DFG transformation EEow B s = veerspeed [N Pytocn [l SpvvPiu-Mind Ours)
pass are merged into the matmul nodes, which reduce a big amount 200 e 20 -
. 200 &l
of the data movement and kernel launch overhead in these layout 2 150 150 150 B
. . . < i
transformation operators. Second, in sparse CNN, we need img2col 3 100 100fr7 1004 5
. . c %]
operators to transform the input data format, thus we can implement % so 50 50 i
a sparse convolution operation using sparse matmul. The img2col 0 old oldd
operators are also layout transformation operators, and we merge Traneiormer F RD
them into the data loading part (from off-chip global memory to 20 20
on-chip memory) of the matmul kernel code to further reduce the % 15 15
o . £
data movement and kernel launch overhead. Besides, this pass also 3 10 1.0
supports merging successive layout transformation operators around & o5 05
the other computation-intensive operators (e.g., GEMYV, reduce, etc.) ~ 0
iteratively in DFG. It means that the layout transformation operator Fw PCNN RD
elimination pass is a general-purpose optimization pass, which can o1 Resgel"ls
optimize the performance in various scenarios other than SpMM - . §§
compilation process. € 34 K 34 §§; §§
3) Meta-op.s fusion pass: This meta—ops fusion pass then merges g §§ 17 §§; §§
the meta-ops in a meta-op group into a single kernel by adding the o AH K} o K K

block condition judging statements in the kernel code as ®. With this
pass, we can gather multiple meta-ops to make full use of the massive
parallel computing resources in hardware, while reducing the kernel
launch overhead.

IV. EXPERIMENT

A. Experiment setup and benchmark

The main code of SpMMPIlu includes the Sparse IR, and the three
added passes in the front end and backend of the NN compiler. As
a compiler Plug-in, SpMMPIlu can be easily embedded in various
deep learning compilers like TVM [11], MindSpore [23], and MLIR-
based compilers [24] with only a little effort to modify the code with
the default data structures in each compiler. In our experiments, we
embed SpMMPlu into MindSpore (named SpMMPIlu-Mind) as a
full-stack solution for SpMM.

We evaluate SpMMPIlu-Mind on one attention-based model and
two convolutional-based models with four different sparsity patterns,
respectively, on NVIDIA V100 GPU and Huawei Ascend 910. The
specific sparse models across different task domains are shown in
Table I. The sparsity ratio we used in each case is calculated
according to the experimental results in the corresponding paper,
ensuring acceptable accuracy loss in these sparse models. We com-
pare SpMMPIlu-Mind with eight representative solutions, including
two popular dense DNN compilers: TVM (0.9.dev0) [11] and Mind-
Spore [23]. One sparse DNN compiler: TVM-Sparse [11]. Two pop-
ular deep learning frameworks: DeepSpeed [12] (specially optimized
for sparse Transformer model) and PyTorch 1.13 [13]. To evaluate the
state-of-the-art dense/sparse kernel libraries in an end-to-end model,
we create implementations by wrapping cuBLAS [9] (cuBLAS-
Mind), cuSPARSE [14] (cuSPARSE-Mind) and sputnik [15] (sputnik-
Mind) in MindSpore, separately.

B. Overall performance

1) Performance on GPU: The first row of Fig. 6 shows the
inference latency of the attention-based Transformer with the four

FW cw PCNN RD
Resnet-50

Fig. 6: Inference latency on NVIDIA V100 GPU.

sparsity pattern on NVIDIA V100 GPU. For sparse attention in cuS-
PARSE, sputnik, TVM-S, DeepSpeed and SpMMPlu-Mind, @ x K T
is SDDMM (output sparsity), and S x V' is SDMM(input sparsity).
However, PyTorch, MindSpore, TVM and cuBLAS treat Q x K and
S x V as dense matrix multiplications. For all four cases, TVM-S
has no advantage over the corresponding dense TVM, because the
kernel templates it uses cannot effectively support different sparse
patterns. The SOTA sparse kernel sputnik and cuSPARSE perform
worse than the dense cuBLAS on the four patterns. The reason is
that the sparsity ratios in these three patterns are too small. However,
sputnik and cuSPARSE usually can outperform cuBLAS only when
the sparsity ratio reaches very high values (at least 96% in our
experiments). DeepSpeed performs the best among them, in which
there are some targeted optimizations for these widely used sparsity
patterns in Transformer. Compared with DeepSpeed, our SpMMPlu-
Mind performs 1.28x, 1.31x, 1.38x and 1.22X speedup with these
four sparsity patterns, separately.

The second and the third row of Fig. 6 shows the inference latency
of the Resnet-18 and Resnet-50 with another four widely used spar-
sity patterns on NVIDIA V100 GPU. For the two structured pruning
patterns filter-wise and channel-wise sparsity, SpMMPIlu-Mind not
only performs best among all these works, but also has enormous
performance improvement compared with existing works (1.48x and
1.54x for Resnet-18, 1.56x and 1.69x for Resnet-50 compared
with the best TVM). For the other two patterns, PCNN and RD
sparsity, TVM and cuSPARSE perform best among the existing
works. SpMMPlu-Mind also performs 1.35% and 1.39x with PCNN,
1.31x and 1.35x with RD on Resent-18 and Resnet-50 compared
with the best existing implementations.

The performance gain of SpMMPlu-Mind comes from three as-
pects. One is that our Sparse IR is excellent at catching the locality
feature in SpMM, which is particularly significant in various rule-
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Fig. 7: Inference latency on Huawei Ascend 910.

based sparsity patterns like GST, LE, BD sparsity in Transformer and
FW, CW sparsity in CNN. The second is that the meta-ops in our
Sparse IR can be well scheduled easily through reusing the powerful
schedule ability in the embedded compilers, bringing high-quality
kernel code. The third is that with our segmentation & grouping
algorithm in Sec. III-C, the achieved three-level-structured Sparse IR
fully takes the abstraction of the hardware intrinsic and multiple-level
parallelism / sequentiality in architectures into consideration, which
ensure a full utilization of the massive parallel resources.

2) Performance on Huawei Ascend 910: We also implement
SpMMPIlu-Mind on Huawei Ascend 910 to prove the scalability
on various hardware platforms. The results are shown in Fig. 7.
Compared with the original compiler MindSpore only supporting
dense operations, Sp)MMPIlu-Mind Speedup 2.47 %, 1.96x and 2.20 x
averagely on Transformer, Resnet-18 and Resnet-50. By abstracting
hardware intrinsic as the minimum unit in segmentation & group-
ing algorithm, and mapping the different levels of parallelism /
sequentiality in hardware architecture to different levels in Sparse
IR, SpMMPlu can be easily extended to other spatial accelerators.

C. Influence of sparsity ratio and sparsity location.

We provide ablation studies to demonstrate the impact of sparsity
ratio (Fig. 8 (a)) and the location of sparsity (Fig. 8 (b)) on inference
latency. We choose two sparsity patterns BD, LF, and the common
sequence length (4096) in Transformer, as a case study for these two
factors. Fig. 8 (a) shows the speedups of the three sparse matrix
operation libraries on different sparsity ratios compared with the
original dense MindSpore on GPU. We can figure that all the three
implements suffer from low performance when the sparsity ratio is
below 68%. However, For the sparsity ratio higher than 85%, Sp-
MMPlu offers significantly higher speedup compared with the other
two implementations. Besides, the sparsity location also affects the
inference performance. We show the speedups of SDMM (input spar-
sity) and SDDMM (output sparsity) in various sparsity pattern_ratios
compared with their dense counterpart MindSpore as in Fig. 8 (b).
It can be figured that, for the same sparsity pattern and sparsity
ratio, the SDDMM always give a higher speedup performance than
SDMM. This is because, for input sparsity, there is an additional
constraint in the meta-op segmentation & grouping algorithm that
the meta-ops with additive relationships should not be grouped into
one meta-op group. With this constraint, more meta-op groups (also
means more cuda kernels) are generated. We combine several groups
with no additive relationship together to improve hardware utilization,
however, inducing unbalanced workloads because the meta-ops in
combined groups may have different sizes.

V. CONCLUSION

SpMMPlu is a compiler plug-in for existing NN compilers to
extend the compilation ability for SpMM. In SpMMPlu, a three-
level-structured Sparse IR is proposed using meta-op to represent
SpMM in a hardware-aware method, in which the parallelism and
sequentiality in hardware structure are well matched with different
granularity of the computations in SpMM. Experimental results show
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Fig. 8: Ablation study of sparsity ratio and sparsity location: (a) The
speed up of the three designs on different sparsity ratios. (b) The
speed up comparisons between input sparsity and output sparsity.

that with SpMMPlu, SpMMPIlu-Mind achieves noticeable speedup on
various hardware platforms.
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